Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease.
نویسندگان
چکیده
We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS-LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS-LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS-LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed "constrained divergence," in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance.
منابع مشابه
Broadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization
Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...
متن کاملGenetic and Molecular Dissection of Blast Resistance in Rice Using RFLP, Simple Sequence Repeats and Defense-Related Candidate Gene Markers
Blast, Pyricularia grisea (Cooke) Sacc., is one of the most destructive diseases of rice worldwide and canresult in significant reductions in yield. The use of resistant cultivars is the most economical and effectiveway of controlling rice blast. A variety of DNA markers, including plant defense-related candidategene markers are available for genetic characterization and molec...
متن کاملهرمی کردن ژنهای مقاومت به بلاست Pi-1 و Pi-2 در برنج رقم طارم محلی
Blast (Magnaporthe grisea) is the most important disease of rice in Mazandaran province, north of Iran, which causes severe damages annually on susceptible cultivars. Tarom Mahalli is a local aromatic cultivar with high cooking quality and marketability, but very susceptible to blast. To protect this cultivar and similar susceptible cultivars against rice blast, farmers have to use high amounts...
متن کاملانتقال ژنهای مقاوم به بلاست Pi-1 و Pi-2به برنج رقم طارم دیلمانی
Rice cultivar Tarom Dilamani becauded a fragrance, flavor, cooking and marketing is a qualitative rice in Iran. This cultivar have high susceptibility against blast disease (Magnaporthe grisea). One of the important trouble producers of the Dilamani's rice cultivar is chemical control against blast disease and cause poisonous pollution of natural environment. The best manner in order to control...
متن کاملLarge scale germplasm screening for identification of novel rice blast resistance sources
Rice is a major cereal crop that contributes significantly to global food security. Biotic stresses, including the rice blast fungus, cause severe yield losses that significantly impair rice production worldwide. The rapid genetic evolution of the fungus often overcomes the resistance conferred by major genes after a few years of intensive agricultural use. Therefore, resistance breeding requir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 46 شماره
صفحات -
تاریخ انتشار 2013